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We derive a finite-size scaling representation for the partition function for an 
Onsager-Temperley string model with a wetting transition, and analyze the 
zeros of this partition function in the complex scaled coupling parameter of 
relevance. The system models the one-dimensional interface between two phases 
in a rectangular two-dimensional region { (x, y) e N2, _ L ~< y ~< L, 0 ~< x ~< N}. 
The two phases are at coexistence. The string or interface has a surface tension 
2KkT per unit length and an extra Boltzmann weight a per unit length if it 
touches the surfaces at y = ___L. There is a critical value ac = 1/2K and for a > ac 
the string is confined to one of the surfaces, while for a < ac the string moves 
roughly in the rectangular region. The finite-size scaling parameters are 
7=a~N/L 2 and ~=L(a-a~)/a~. We find that for I~1 large, the zeros of the 
scaled partition function lie close to the lines arg(r = +n/4 with re(~) > 0. We 
discuss the motion of all the zeros as c~ changes by both analytic and numerical 
arguments. 

KEY WORDS: Wetting transition; finite-size scaling; partition function 
zeros. 

1. I N T R O D U C T I O N  

In  a pa i r  of  f a m o u s  papers ,  Y a n g  a n d  Lee  (1'2~ d i scussed  the s t ruc tu re  of  the  

g r a n d  c a n o n i c a l  p a r t i t i o n  f u n c t i o n  for  a sys tem in wh ich  the  par t ic les  h a v e  

a h a r d  core,  so tha t  there  is a m a x i m u m  n u m b e r  densi ty .  F o r  a finite 

sys tem the  g r a n d  c a n o n i c a l  p a r t i t i o n  func t i on  is t hen  a p o l y n o m i a l  in the  

fugac i ty  z. T h e y  s h o w e d  h o w  a phase  t r an s i t i on  can  resul t  in the  t h e r m o -  

d y n a m i c  l imi t  if the  ze ros  o f  this p o l y n o m i a l  lie on  l ines in t he  c o m p l e x  

z p l ane  f o r m i n g  a f ini te  dens i ty  per  uni t  l eng th  on  the  lines. T h e  phase  

t r an s i t i on  occurs  w h e n  these  arcs  of  ze ros  cu t  the  pos i t ive  real  z axis in the  
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thermodynamic limit. They also proved their famous circle theorem for 
ferromagnetic Ising lattice gases, illustrating their mechanism for phase 
transitions. Later, Penrose (3) extended these ideas to systems with particles 
whose short-ranged interaction was not necessarily hard core, but merely 
repulsive enough to allow the thermodynamic free energy density to exist. 
In magnetic lattice systems these ideas transfer with the variable 
exp (2H/kT)  (H  being the magnetic field) replacing z. The idea of studying 
the zeros has led to extending the Lee-Yang circle theorem to other 
systems, some of them quantum mechanical, (4.5) and to extensive numerical 
studies of the zeros of the partition function for a variety of Ising models. 
This work continues with, for example, a discussion of the motion of the 
first Lee-Yang zero for a d-dimensional ferromagnetic Ising model. (6) 

Fisher (7) and Ono et al. (8) considered the zeros of the partition func- 
tion as a function of complex/? = 1/kT  and illustrated these ideas with the 
two-dimensional Ising model. Jones (9~ developed a general theory for these 
complex temperature zeros. A more recent paper by Itzykson etal.  (1~ 
considered a general system of volume V and an external field h with 
an infinite-volume-limit phase transition with critical temperature Tc and 
critical field he. Developing ideas originally due to Fisher and Barber, (1~) 
Itzykson et al. introduced finite-size scaling variables t = ( T -  T~) V p and 
v=  ( h - h ~ )  V q and wrote the partition function Z(V ,  T, h) in the form 

Z(V ,  T~ + t V  -p, h~ + v V  -q) 
F(t, v)= lira (1.1) 

v~ ~ Z (V ,  To, he) 

They then considered the zeros of F(t, v) as functions of complex t and v. 
Glasser et aL (12) identified F(t, 0) for a system undergoing a classical mean 
field transition as proportional to a particular K~/4 Bessel function and 
showed that the zeros of F(t ,O) are on lines re(t)>0, arg(t)= ++_3n/4, 
verifying the theory developed by Itzykson et al. for the dependence of 
critical exponents on the angle at which lines of zeros approach the real 
axis. Later work by Glasser et aL (~3~ extended the ideas of Itzykson et al. 
and their own mean field work to describe the position of zeros in the 
scaled complex temperature plane of the finite-size scaling region partition 
function for general systems undergoing phase transitions. For zeros of 
large magnitude (i.e., far from the origin in the complex t plane), they 
develop asymptotic expansions for the zeros in terms of the parameters 
and A_+ in the singular part of the free energy density 

f (S)~A+_ [tl 2-~ (1.2) 

and the angle q~ at which the lines of zeros cut the real temperature axis. 
Here the parameter t = (T- -T~) /T~ ,  so that large, positive t corresponds to 
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weak coupling and large, negative t corresponds to strong coupling. They 
found, for large n, 

t, ~ {2~n[A2+ + A 2 - 2A + a _  cos(~c0] -*/2/V}~/(:-~) exp[i(~ - ~b)] (1.3) 

In this paper we implement these ideas on a model which shows a wetting 
transition, the Onsager-Temperley string. (~4) We consider the string on a 
rectangular lattice to begin with, but later reduce it to a string with 
continuous heights, because the resulting technical problems are rather 
simpler. The initial system is considered as composed of N +  1 columns, 
0 ~< x ~ N. In each of these there is to begin a discrete real height variable 
y(x)=ln(x), where n(x) is an integer on -L'<<.n(x)<~L' and also 

- L <<. y(x) <~ L. Thus, L = lL'. These height variables define a contour from 
y(0) = L -  1 to y(N) = L -  1 composed of "horizontal" pieces of length 1 
from ( x -  1/2, y(x)) to ( x +  1/2, y(x)) for 1 <~x<<.N-1 [and of length 1/2 
from (0, L - l )  to (1/2, L - 1 )  and (N-1 /2 ,  L - 1 )  to ( N , L - 1 ) ]  and 
"vertical" pieces from ( x -  1/2, y ( x -  1)) to ( x -  1/2, y(x)), 1 <~x<~N. The 
length of this contour is 

N + I  

L = N +  Y, l y ( x + l ) - y ( x ) l  (1.4) 
x- -O 

As the contour changes shape, the horizontal part of this length, N, does 
not change, and so we ignore it below. 

We consider the contour as the interface between two phases and 
assume it has a surface tension 2KkT per unit length. We also include an 
extra adsorption potential 

V(ln) = -~(G,-~, + G,~,) (1.5) 

which has e > 0, so that the adsorption potential tries to stick the contour 
to either the upper or lower surface. If the contour lies entirely on one of 
these surfaces, then the system is filled with one phase or the other. The 
dominant phase "wets" the channel. This model was been studied exten- 
sively by Abraham and Smith (15'16) with the two bulk phases not in 
coexistence. This work relies heavily on their analysis of the general 
problem. 

The partition function for the system may be written, with co = e/kT, 
a s  

7/N(r/(0), n(N), co) 
L'  L '  ~" N - -  1 

= 2 "'" Z e x p l - 2 K /  2 In (x+l ) -n (x ) l  
n ( 1 ) = - - L '  n ( N ) =  --L'  x = 0  

~ t + ~ [6n(x),-L' + 6~(x i~,--L' + ~n(x),L' + 6n(x-- I),L'] (1.6) 
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We may write this partition function in terms of the real symmetric transfer 
matrix 

t - 2 K l  In(x+ 1 ) -  n(x)l ~--(n, hi )  = e x p  

~ } + ~  E6=(x)_L,+6n(~_I),_L,+?)~(~),L,+6~(x_~),L,'] (1.7) 

This transfer matrix is real and symmetric, so that its eigenvalues are all 
real and its left and right eigenveetors are equal and may be written using 
real arithmetic only. The equation 

L' 

J-(n, n') (Om(n')= 2mCOm(n) (1.8) 

may be rewritten as 

L' 

T(n, n'; co) (~m(n') = 2m~bm(n) (1.9) 
n '  = - - L '  

where 

T(n,n';co)=exp{--2KIIn(x+l)--n(x)J+co[6,(x),_L,+6=(x),L,]} (1.10) 

and 

[ ~ ] ~bm(n) = ~m(n) exp - ~- (6,,,_ L, + 6n.L.) (1.11 ) 

Since we may write the partition function in terms of the eigenvalues and 
eigenvectors of ~ ,  we may also write them in terms of the eigenvalues and 
eigenvectors of T. Thus, we find 

~N(L'-- 1, L' 1; co) ~ 2 N _ = mCk,,( L 2  '-- 1) (1.12) 
m = l  

It turns out that it is convenient to define the parameter a by 

a = l [-exp(co) - 1 ] (1.13) 

At any finite l, we can solve the problem of the partition function via the 
transfer matrix formalism, for we can find the eigenvalues and right eigen- 
vectors of T. The details are more than a little complicated and it is easier 
to consider the limit l-~ 0 with a and L fixed (so that L' --* ~) .  We then 
find 

7/N(L'-- 1, L ' -  I; co)= 1-~N-I)~N(L_, L-; a) (1.14) 
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where 

QN(y(0), y(N); a) 

L dy(1) . . . j  Ldy(N-1)exp  - 2 K  ~ [ y ( x ) - y ( x - 1 ) l  
- - L  - -  x = l  

N - - I  

• 1--1 [1 +a6(y(x ) -L)+a3(y(x )+a) l  (1.15) 
x=l 

In (1.14), L- is a notation which represents the limit of l (L ' -1 )  as l ~ 0  
with L fixed. That is, the contour is pinned at the "top" of the rectangle, 
but just outside the adsorbing potential, which gives the delta functions in 
(1.15). 

This partition function may be evaluated by the formula 

QN(L-, L-; a ) =  ~ 2m~ ( L- )  (1.16) 
m = l  

where the 2m and Ore(Y) are the eigenvalues and normalized eigenvectors of 
the transfer operator 

dy' e -2Kly Y'JO~(Y') dy' (TK(a; L) q~)(y)= -L 

+ae -21c(L Y)qS(L)+ae-2K(r+Y)O(-L) (1.17) 

The function QN(y(0), y(N); a) is thus the partition function for a string 
with continuous heights - L  ~< y ~< L on discrete columns with an energy 
2KkT per unit length of contour and with an extra Boltzmann factor if the 
contour is sticking either to the top or to the bottom of the rectangle. The 
embarassment, obvious in (1.14) as l ~ 0 ,  is simply avoided by always 
considering ratios of partition functions. 

In Section 2 the necessary results for the nonsymmetric transfer 
operator TK(a; L) are reviewed. We note here that our derivation of this 
operator ensures that its eigenvalues are all real and that for QN(L-, L-; a) 
we only need the square .of the normalized right eigenvectors qS~(L-). 
Further details may be found in ref. 16. In Section 3 we display the phase 
transition which occurs in the thermodynamic limit N ~  oo and then 
L ~ o% with critical coupling ac = 1/2K. We also derive a finite-size scaling 
partition function ratio F(~,~) [cf. (1.1)] with N=~L2/a 2 and 
a=ac(1  + ac(1 +ac~/L) in the limit L ~ ~ .  This partition function ratio 
requires the solutions of a finite-size scaling eigenvalue relation which is 
discussed in Section 4. The zeros of the scaled partition function ratios are 
discussed in Section 5. 
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2. THE PARTIT ION FUNCTION FOR THE STRING 

In (1.16) the eigenvectors and eigenvalues obey 

( rK(a; L) q~m)(Y) = }~'mOrn (2.1) 

where TK(a; L) is given by (1.17) and the eigenvalues 2,, are all real, as 
discussed above. The normalization of the eigenvectors comes from the 
ordinary normalization of the Ore(n), the transformation (1.11), and the 
taking of the limit 1 ~ 0. The normalization is then 

L 

f Om(y)~5,,(y)dy+a[q}m(L)O,,(L)+Om(-L)O,,(-L)]=6m,,, (2.2) 
- - L  

With the representation (1.17) for Tx(a; L), (2.1) my be differentiated twice 
to give 

r - - U ~  1 - r  = 0 

on - L  < y < L together with the boundary conditions 

and 

We define 

and then 

gYm(-L)= 2 K ( 1 -  ~am) (~m(-L) 

(2.3) 

(2.4) 

(2.5) 

2 _(l_2ac/2m)~2m=2ac/(l+p2) (2.7) 

There are then two classes of eigenfunction, one class odd in y and the 
other even in y. 

The even eigenfunctions are 

O em( Y ) = Am cos( #mY/ac ) (2.8a) 

where the ]2 m are solutions of 

a~ k a~ / La~ ~ - 1  + Z k - - ~ c  / A c ~  a~ 1 = 0  (2.9a) 

ac = 1/2K (2.6) 
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and the normal iza t ion  constants  are 

Am = L l + ~ - - - T s i n  + 2 a c o s  2 (2.10a) 
\ a~. / J  \ a~ / j  

The odd eigenfunctions are 

~bom(y ) = B m sin(#~y/a~) 

where the # "  are solutions of 

(2.8b) 

and the normal iza t ion  constants  are 

B m = { L [  1 ac ( 2 # ~ L ~ ]  + -1/2 
2#mL sin 2as in2(#mL~t  (2.10b) 

' k a~ /A k ac 13 

and 

If we write r m = ~mL/ac and r~ = If,  Liar, then the eigenvalue equat ions 
may  be rewrit ten 

rm t a n ( r m ) =  - - [ (L / a~ ) ( a  - a ~ ) +  ar2m/L] (2.%) 

rm' cot(r,,) '  = [(L/a~)(a -- ac) +arm~L]'2 (2.9d) 

with 

Since on ( n -  1/2) ~ < r < (n + 1/2) re, r tan(r)  is continuous,  monotonic ,  
and spans ( - 0 %  oe), there is exactly one root  r n on this subinterval  of r 
for all n ~> 1. There  are other  similar solutions for n ~ < -  1, but these give 
the same eigenvalues 2n. Similarly, there is exactly one root  r', on 
n ~ < r <  (n+ 1)rc for all n~> 1 (and n~< - 1 ,  again giving the same eigen- 
values). There  is also a solut ion r o of (2.1 la )  on 0 ~< r < re/2 provided a ~< ac 
and a solution r ;  of  (2.11b) on 0 < r < ~  provided a<ac=ac+aZ~/L. If  
a > ac, the solution r o becomes r 0 = iso with s o satisfying 

s o tanh(so) = (L/a~)(a - a~) - asZ/L (2.9e) 

which has exactly one solution for a > a~. The associated eigenfunction is 
then 

~eo(Y) = Ao cosh(soy/L ) (2.8c) 

Ao = { L I l + ~---~o sinh( 2so) ] + 2a cosh 2(so) } -1/2 (2.10c) 

7 - -  cos 1 + ~ sin = 0 (2.9b) 
a~ \ a~ / ka~ka~ \ a~ / A \ a~ / 
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If a > d~, then the solution r o' becomes r o' = Is o '  ' with s o' satisfying 

s; coth(s;) = (L/a2)(a - ac) - as;Z/L (2.9f) 

which has exactly one solution for a > a~. The associated eigenfunction is 
then 

Ooo(Y) = Bo sinh(s; y /L  ) (2.8d) 

with 

{[ ]  1j2 
1 sinh(2s~) - 2 a  sinh2(s~)~ B 0= L 1--2s----~o (2.10d) 

For real ]Am (or ~t') we have ~m<]~rn+l (or ~ t ' < g ' + ! )  and so 
)~e,m>2e, m+l (or 2o, n>2o,,+1). Also, #m<#m and so ,~e,m>2o, m . Also, if 
/~0 =ivo, we have 2e,0>2 .... n>~ 1, and similarly if ~'o=iV'o, we have 
2o, O>2 ... .  n~>l. Finally, 2e,0>2o, o whether #o and #; are real or 
imaginary. The largest eigenvalue is thus always 2e,0. These facts complete 
the description of the partition function QN(L-, L-, a). 

3. THE PARTIT ION FUNCTION A N D  FINITE-SIZE SCALING 

We may now evaluate the free energy per column in the thermo- 
dynamic limit for the continuous variable contour. This is 

~p(a; 1 
L , _  lim ~ l o g  QN(L-, L-; a) (3.1) 

k T  N--.oo I V  

We may also consider L large and so we may take N ~  oo in (3.1) first and 
then L ~ 0% or we may take L --* oo first and then N ~ oo. We may also 
take L--* oo and N ~ oo together, with some fixed relation between L and 
N. If we define 

~kl(a ) = lim ~(a; L) (3.2) 
L ~ o o  

then 

~ l ( a ) =  - k T  lim log(2e, O) (3.3) 
Z ~  

We also define 

~P2(a) = - k T  N-~lim z,~lim l l o g  QN(L-, L-; a) (3.4) 
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For  a > ac we have 2~, o = 2 a c / ( 1 -  v~), where v 0 is the solution of 

1 
ac/  ~ tanh \ a J  aa~ ( a -  a~) = 0 (3.5) 

In the limit L ~ o% the hyperbolic tangent  is 1, and so 

a -  a C 
vo = (3.6) a 

Thus, for a > a~ we have 

r  log[1  - (1 - aSa)  2] - log(2ac) (3.7) 

For  a<a~  we have )~e ,0=2ac / ( l+#~) ,  where #0 is the solution on 
0 ~ #o ~ rcac/2L of 

# o t a n ( # o L ] _ a ~ - - a  a #2 
\ ac / ac ac 

(3.8) 

Thus, as L ~ o% /te, O ~ 2a~ and we have 

r 1 (a ) / kT  = - l o g ( 2 a c )  (3.9) 

The system has a phase transition. If we study the height-height  correlation 
function, we find that  for a > ac, this correlation function decays exponen- 
tially with column separation and the height distribution function is 
localized close to the surface at y - - L .  For  a < a~ the correlat ion decays 
polynomial ly  in column separation and the height distribution function is 
no  longer localized. Interpreted as an interface, the contour  becomes rough 
for a < a ~  and one phase can wet the surface at y = L .  For  a > a c  the 
con tour  is smooth  and there is no wetting of the surface. 

If  we take the limit L --* oo first, we see that for a < ac the fin become 
uniformly distributed on the real line and we may  replace the sum over 
eigenvalues by a Riemann integral. We find 

lim ~.N(L-, L-; a) 
L ~ o o  

2 (2a~)N f )  X 2 
rca~ x 2 + (a/ac -- 1 + ax2/ac) 2 (1 + x 2) N dx (3.10a) 

for a < ac. If  we consider a > ac, there are two eigenvalues split off from the 
band  of eigenvalues on 0 ~< 2 ~< ac and when we include their contr ibut ion 
we find 
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lim 
L ~ o o  

QN(L-, L-; a) 

El = (2a~)N ~a(a--  a~/2) 

+ ~ x 2 + ( a / a c - - l + a x 2 / a c )  2 ( l + x 2 ) - N d x  (3.lOb) 

for a > a~. If we evaluate the integrals in (3.10a), (3.10b), we find 

t~ l (a) /kT= 02(a ) / kT  (3.11) 

We may now consider finite-size scaling effects for both of the above limit- 
ing processes. If we consider N ~ cc first, then the structure of the partition 
function for a =  ac(1 + A), A >0 ,  will be dominated by (2at) u ( 1 -  v2) -N, 
which will have an interesting limit when v~=O(1/N) .  The equation 
for Vo is 

vo tanh(voL/ac) = (a - ac)/a - avZ/ac (2.9g) 

If v 0 = aN-1/2, we find 

~2L/a~ = ~ - a~Z/a~ (3.12) 

with 

x = N ( a - a c ) / a c  (3.13) 

Thus we find 

{~N(L-, L-; ac(1 + K/N)) ac~c 
GI(~:) = lim = e x p - -  (3.14) 

N~ oo QN(L-, L-; a~) L 

The limit of this ratio as L ~  oe is 1. The same result also holds for 
a=a r  - A ) ,  3 > 0 .  

On the other hand, we may consider the limit L ~  ov and then 
N - ~  oe. In that case we may define 

= N1/2(a - ac)/ac (3.15) 

and consider 

G2(~) = lira lim Qu(L- '  L-; ac(1 + (/x/-N)) (3.16) 
N ~ o 3  L ~  o~ ~.N(L-, L-; ac) 
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using (3.10a), (3.10b) directly. An asymptotic expansion of the integrals 
then gives 

i2x/~(4ee_2+l ~ x2e-~ dx ) 
\ ~'JO X2 "~ ~ 2 for 4 > 0  

) 
G2(~) (3.17) 

'~ 2 ~ x2e -x~ 
( ~ J o  x ~ .  2dx for ~ > 0  

We may evaluate the integral here to give 

G2(4) = xfl~ 4er + erf(4)] + 1 (3.18) 

which is expression valid for all 4. 
We may also let N and L become large together. A string in two 

dimensions pinned at (0, 0) and (0, N) has fluctuations that are O(xflN ). 
Further, the spin-up, spin-down interface in the two-dimensional Ising 
model can exhibit similar scale fluctuations./~7) Thus, we may expect 
that when L =  O(~/-N), the contour will fluctuate over the whole of 
- L  ~< y ~< L. Thus, we define ~ and ~ by 

N= aL2/a 2 (3.19) 

and 

= L(a - ac)/a 2 (3.20) 

We then consider [-again cf. (1.1)] 

Q~L:/a~(L-, L-; ac(1 + ac(/L)) 
F(~, ~ )=  lim (3.21) 

L ~ o~ Q~L2/~(L', L-; ac) 

If we consider ~--* 0, then we should expect the behavior of F(~, ~) to 
resemble that of G2(ff). We may expect the c~--, ov limit to be rather 
singular, since it should resemble the function GI(K)= 1. In this finite-size 
scaling limit L--* oo, the eigenvalue equations become 

r, tan(r,) = - ~ - r~/L (2.9h) 

and 

r'n cot(r'.) = ~ + r'.2/L (2.9i) 

The quantities ), N in the partition function Q are then ~e,n 

2eU,, = (2at) u (1 + ctr~/U)-u~ (2ac)N e x p ( -  c~r]) (3.22) 
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with a similar formula for j~N The normalization of the eigenfunctions 
O , n  ' 

gives 

q/:,,(L)= {L [ l + tan2(r,) +ltan(rn)l  + 2a} -1 (3.23) 

and another similar formula for 2 Oo,,(L). If we now let L become large, we 
obtain 

= 1 (2ac):,L2/,~ {n =-~o~ LFP2 exp(--~P~) p-~~ ~7_-- ~7 + q: exp(--~q:)7] ~-~2 + ~5--~- ~ J~ 

,324) 

where the p~ are all the solutions of 

p~ sin(p.) + ~ cos(p.) = 0 (2.9j) 

and the qn are all the solutions of 

q~ sin(q~) - ~ cos(q~) = 0 (2.9k) 

When ~=0  we have pn=mz, nr and qn=(n+l/2)~, for all ns7/. 
Further, p2 ~ _~ for small ~. Thus, we have 

Q~L2/a~(L-, L-; ao) 
1 o(1)] - (2ac) u ~,_ exp ~----~)L1 + 

2L . . . .  

' (1)) 
= 2-L (2a~) 0, exp 1 + O (3.25) 

where we have used the Bateman manuscript definition of the Jacobi theta 
functions. (~8) We thus have 

F(~,~)= ~ Fp:exp(-~P--~z)2+ 2 4-q:exp(-~q:)ql- ( (_~_~_2))] ' 

(3.26) 

Later we describe the zeros in ~ of F(~, ~) and compare them with those of 
G2(~). We are particularly interested in the motion of the zeros as ~ varies. 
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4. S O L U T I O N S  OF T H E  A S Y M P T O T I C  E IGENVALUE 
E Q U A T I O N S  A N D  FINITE-SIZE SCALING F O R M  
FOR THE FREE ENERGY 

We consider the two eigenvalue equations 

Pn s in (p j  + ~ c o s ( p j  = 0 

and 

q, sin(q,) - ~ cos(q,) = 0 

(2.9j) 

(2.9k) 

To understand the structure of the solutions, we construct asymptotic 
expansions for Pn(~) and q,(~) for small and large [~[ and then describe the 
numerical behavior of the solutions. 

Suppose first that [~[ is small. The first solution is Po and we have 

po(~) = [~ exp(i~)] in [-1 + ~ / 6 +  11~2/360 + O(~3)] (4.1) 

There is another solution at -Po(().  The other solutions are close to 
p.  = mr and we find 

pn(() = n~[1 -(/(nrc)2-(2/(nrc)4+ O((3)], Inl ~> 1 (4.2) 

There are also solutions qn(() close to (n + 1/2) ~ and we find 

(4.3) 

If we consider (= /~  exp(#) with // small, then as 7 varies from - g  to re, 
the solutions of Eqs. (2.9j), (2.9k) describe loops clockwise about nrc or 
(n + 1/2) rrl The size of these loops decreases as n increases. 

We may also consider I([ =/~ large. For (2.9j), either Ip, I is large or 
lcos(p,)f is small. There are two solutions for tP,] large, namely 

(4.4) Po+ = _+i~{1 + O ( e x p [ - 2  re(l)])} 

This expansion is valid when re( ( )>0,  that is, for - g / 2 < r  in 
=/~ exp(iT). There are also two-large modulus solutions to (2.9k), 

qo_+ = +i~{1 + O ( e x p [ - 2  re(if)I)} (4.5) 
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for - ~ / 2 < y < T t / 2 .  If Icos(pn)l is to be small, then p,  must be close to 
(n + 1/2) rc and we then find 

(1)[ 1 p,,(~)= n + ~  rc 1+  + - 5  n +  rc~-' 

x {1-- 3/[(n +~) z]2} + O(~-4)] (4.6) 

Similarly, there will be solutions to (2.9k) with Isin(qn)l small. These 
solutions will be close to nrc and 

1 )3 [ 1 _  3/(mr)2] ...~_ O(ff--4)} qn(~)=nrc 1 + i f - l +  ~ -2 - -~  (nrc~-I (4.7) 

822/60/5-6-2 



544 Smith 

As y varies from - ~  to re, these solutions also describe clockwise loops 
about (n + 1/2) rc or nrc and the size of the loops increases as n increases. 
The remainder of the large-lpnl or large-lqnl trajectories for re/2 < 7 < 3zt/2 
form half loops interleaving the loops along the real axis. The large-lp~l 
and large-lq, l trajectories are thus roughly circular with indentations or 
bumps close to the real axis. In Figs. l a - l e  we present some representative 
trajectories at fixed/3 with - rc  < 7 < re. The trajectories reflect the conclu- 
sions we can draw from the asymptotic expansions. 

One point which can be seen from the shapes of these trajectories of 
p,(/~ exp(iT)) and q~(/~ exp(iT) ) with y is that there is a sequence of numbers 
~m at which f p ( Z ) = z  sin(z)+ ~m COS(Z) has a double root. There is also 
another sequence ~" at w h i c h f q ( Z )  = z cos(z) - ~;, sin(z) has a double root. 
At such points the denominators in the two sums in the partition function 
can be zero. However, there are four terms in each sum with zero 
denominators for each m and the residues cancel. Examination shows that 
at such values ~m or ~n of ~, the function F(~, c~) is in fact analytic. 

For large I~l, we may use the leading order terms in the asymptotic 
expansions for the eigenvalues to obtain, for the singular part of the free 
energy, 

(0, rs(~ ,  c~) ~ [4~e ~2 - ~-2 ~ ~93 exp ( - ~ ) )  ]/~93 (0 '  exp ( ~ - ~ ) )  

(4.8) 

The singular part of the free energy density may be obtained from (3.7) and 
(3.9) and may be written 

O]s)(r) ~ A_+z 2 (4.9) 

with z = ( a - a c ) / a c ,  A+ = - 1 ,  and A_ =0.  This makes contact with the 
phenomenological description of scaling region partition function zeros due 
to Glasser et aL (13) Here the Glasser et al. parameter e is not the "shape" 
parameter e used in this paper, but takes the value 0, as may be seen by 
comparing (4.9) with (1.2). In this description r > 0 corresponds to strong 
coupling and v < 0 corresponds to weak coupling, so that scaling region 
partition function zeros should be - 1  times those derived from the for- 
mulas of Glasser et al. Their formula [given in (1.3)] requires the angle ~b, 
which in this system is n/4. Changing the Glasser etal .  (13) formula into our 
notation, the prediction of Glasser et al. is that there should be zeros of 
F(~, ~) for large n at 

. +_ ..~ (2nn/e)  1/2 e • i,~/4 (4.1 O) 
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While it would naturally be of interest to pursue the detailed structure of 
the scaling partition function and the corrections to scaling, we do not do 
so here, turning now to the distribution of the zeros of F(~, c~). 

5. L O C A T I O N  OF T H E  P A R T I T I O N  F U N C T I O N  ZEROS 

We consider first the function G2(~). For re(4)< 0 we use the represen- 
tation 

G2(4) = 1 - xfl~ 4e r erfc( - 4) (5.1) 

This function is analytic in the finite part of the complex r plane. We now 
construct a contour Co(R) going in a straight line from 0 to 
R exp[- -i(rc/2 - 6)], then via a semicircular arc R exp(i0), - (z/2 - 6) ~< 
0~< (7~/2-6), to R e x p [ i ( z / 2 - 6 ) ] ,  and then via a straight line back to 
zero. We then consider the integral 

I(R, 6)= 1 f h'(r (5.2) 
z~l  c~(R)h(~) 

Here h(r  G2(-4) .  We may then use the asymptotic representation (19) 

e r [ r 3A(r ] 
erfc(4) = ~ - ~  1 -~--+ 4fl 4 cos(7)J (5.3) 

for ~ =f l  exp(i~), with IA(4)I < 1. The contribution from the semicircular 
part of the contour is then -(1-26/r~)[l+B/R2sin(6)] ,  where IBI is 
bounded. The contribution from the straight-line parts of the contour is 

~uilog [- h(Rexp[i(u/2-6)])  ] { 1 - 2 6 ) (  1+/~  "~ 

where 181 is bounded. The integral I(R, 6) is then C/R26, where ICI is 
bounded. We may then take 6 = lt/R and then see that the integral 
I(R, 1/R) ~ 0 as R --* oo. Thus, there are no zeros of G2(4) for re(i) < 0. 

Further, 

= f~ e u2 du + ~ i(e -~2 G2(i() 1 -  2(e -~2 (5.4) 

so that if ( be real, the imaginary part of G2(i() is nonzero unless ( =  0, 
which is not a zero of G2(i(). Thus, there are no zeros of G2(r for 
re(4) ~< 0. 
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For re(C)> 0 we use the expansion (5.3) again to obtain 

G2({) = 2 ~ ~e~2+ B(~) /2 f l  2 cos(y) (5.5) 

for {=flexp(iy),  with [B({)[ <1.  Hence, there can be no zeros of 
Gz(f l  exp(iy)) in -7~/4 ~< y ~< 7t/4 for fl > (4 x/-~) -1/3 ~ 0.5. For [{] large, the 
zeros satisfy 

- 1 1 - 1 -  
4 ~/7 L # ~  ] (5.6) 

with IC(r bounded. We then find that for large 1~1 the zeros of G2(~) are 
close to the lines ~ = fl exp( _+ i~/4). We find the expansions for the zeros 

rc 3 , [yz(8n + 

We may now turn to the zeros of F((, cQ. First we consider I~1 large, when 
there are eigenvalues po=  _+i~{1 + O ( e x p [ - 2 r e ( ( ) ] } ,  similar qo eigen- 
values, and further eigenvalues given approximately by (4.6), (4.7). For c~ 
not too small (e.g., e>~ 1) the terms in the sum on n for Inl > 1 may be 
ignored. To leading order in (, the equation for F(~, e) may then be 
reduced to 

~3e~3 = --(7Z2/8) e -~rc214 (5.8) 

We may find zeros of large magnitude as with (5.6) and find that the zeros 
lie close to the lines ( =  fl exp(_ ire~4). These zeros have the expansion 

~n+_ ~ ct-1/2 [ 2 (n + ~) rcll/2 exp {-q- i [ 4 q 

• log \ ~rt,/3 , ] j j  

~z~ 3 - - +  
16n+2 (Sn+ 1) re 

(5.9) 

We notice that as ct becomes large, these zeros coalesce and collapse into 
the origin, giving an essential singularity at ( = 0 of F((, oo), This reflects 
the singular nature of the free energy when we take the limit N ~ c~ first 
and then L--+ oo. 

If ct is small, the zeros spread out and move off any part of the ~ plane 
as ct --+ 0. Indeed, for small ~t the sum over eigenvalues n ~ 0 in F(~, ~) may 
be approximated by an integral and the equation F((, ~) = 0 reduces to 

~3/2(3e~(2 ~- -1 /4  ~ (5.10) 
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Plot of the zeros ~ +  of F(~, 1) for im(~) > 0. If ~ +  is a zero, then ~ _  = ~*+ is also 
a z e r o ,  

so that as 7 ~ 0, ~ ~ = ~, and we have the asymptotic zero equation for 
G2(~) again, namely (5.6). Thus, as ~ ~ 0, we retreive the structure of G2(r 
from F(~, ~). 

In Fig. 2 we plot the zeros ~n+ of F(~, 1). They correspond to the 
sequence ~n+ of Eq. (5.8) for n ~> 2. There do not appear to be further zeros 
in the sequence for n < 2 .  Numerical integration of {SF(~, ~)/8~}/F(~, ~) 
around appropriate contours in the complex ~ plane gives results less than 
0.05 in magnitude unless the contour encloses one or more of the plotted 
zeros, when we obtain the correct zero count for the contour. As a ~ 0, the 
zeros move off the complex ~ plane according to ~ , ( ~ ) ~ , ( 1 ) ~ - m ,  while 
as ~ --, 0% the zeros collapse to the origin, giving the singular scaled free 
energy in the limit N ~ ~ first and then L -~ ~ .  

We may now consider the large-n behavior of these zeros to leading 
order. From (5.8) we have 

~,+_ ~ (2nn/~) v2 exp( + i~/4) (5.11) 

which is exactly the Glasser et  aL (a3) prediction for our system [el. (1.3) 
and (4.10)]. This means that the phenomenological derivation of Glasser 
et  al. ~13) gives the correct asymptotic description of the scaling region parti- 
tion function zeros for the wetting transition in the contour system studied 
in this paper. 

It is of some interest to ask what happens if we study this whole 
problem with the partition function for the system with integer heights, as 
we used in Section 1 to derive the continuous height model. The differential 
equation for the eigenfunctions becomes a second-order constant-coefficient 
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difference equation with similar boundary conditions. If for simplicity we 
choose l =  1 and set 

a' = exp(~/kT)  - 1 (5.12) 

then we find a critical value a'c = e - K / ( e X - - e - K ) ,  where 2K is again the 
contour energy per unit length. The calculations are rather more com- 
plicated than in the continuum height case, but their structure is identical. 
We obtain a partition function ratio in the finite-size scaling limit using 

~' = L(a - ac)/ac(1 + ac) (5.13) 

and 

N =  e'L2/ac(1 + ac) (5.14) 

and the partition function ratio is then exactly F(~', c(). The description of 
the zeros in the ~' plane is then identical to that in the continuous height 
case in the ~ plane. This correspondence is of some interest since we might 
expect some correspondence between these zeros and those of a two-dimen- 
sional Ising model with a boundary field H in the limit K ~ 0. As Abraham 
and De Coninck (2~ have shown, those zeros are on the line r e ( H ) = 0 ,  
which is emphatically not the case here. It is clear only that any connection 
between the two-dimensional Ising-model edge field zeros and those of the 
contour problem considered here is rather more subtle than the simple 
considerations of this paper will uncover. 
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